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Abstract

Grasslands offer a variety of ecosystem services including recreational opportunities.

Unlike forests and coastal beaches, grasslands do not offer natural opportunities for

recreators to adapt to extremely warm temperatures, potentially making grassland

recreation sensitive to climate change. I use mobility data to estimate a causal model

of the relationship between short-run weather shocks and demand for recreation at 16

nationally notable grasslands between January 2019 and April 2022. I use a repeated

discrete choice random utility maximization model and specify visit utility as a func-

tion of a set of average temperature, precipitation, average wind speed, and snowfall

bins. I identify the causal relationship using grassland, month-of-year, and hunting

season fixed effects. Willingness to pay (WTP) per household for a grassland day visit

is about $53.60 on average - nearly twice the WTP for a coastal fishing trip in the East-

ern U.S. I find that grassland recreators are averse to visiting during months with more

extreme average temperature days (cold or hot). Snowfall is also a significant demand

determiner. Responses to temperature and snowfall are heterogeneous across histori-

cally colder or warmer climate regions. Projections for 2081 - 2100 suggest grassland

recreators are likely to experience average annual welfare gains from climate change of

up to $1.3 million from increased visit quality rather than quantity.

∗Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign,
kkwells2@illinois.edu
I thank StreetLight Data for graciously providing access to the data. I also thank Amy Ando, Shadi Atallah,
Sahan Dissanayake, Andrew Earle, Jared Hutchins, Max Melstrom, and Roger von Haefen for their helpful
comments and suggestions.

https://kayleewells.github.io/files/Wells_JMP.pdf
mailto:kkwells2@illinois.edu


“The question is always asked by the curious travelers who have crossed the Plains at

Interstate speeds, ‘How can you live here without the mountains, the ocean, the woods?’

But what they are really speaking to is their desire to ‘get it’ right away. The sublime of

this place that we call the prairie is one of patience and looking. . . If one is to understand

the beauty of this place, the old answers just won’t do.”

Keith Jacobshagen (1995)

1 Introduction

Grasslands, or prairies, once covered large swaths of what is now the Midwestern andWestern

United States. Conversion of native grassland for agriculture and development has occurred

since the first European settlers came to the region continuing to this day, but what remains

of the prairie is a primary outdoor recreation option for people living in this vast region.

When driving to the mountains, ocean, or woods for a day’s recreation is not an option, they

walk, bike, view wildlife, and hunt on nearby grasslands. What threat does climate change

pose to grassland recreation? This paper uses mobility data in a structural econometric

model to estimate how changing weather patterns will affect the well-being of people who

engage in grassland recreation and change the flows of tourists - which have important value

to local economies - to grassland sites.

The recreational value literature thus far has treated grassland recreation and its value as

a passenger on a plane does a “flyover state” - at most a footnote to a journey to a seemingly

more interesting and desirable destination. Yet, grassland recreation has value. In the only

study to estimate the value of U.S. grasslands as distinct recreational sites, Wells (2023)

finds that residents of three Midwestern states are willing to pay about $10 per-visit, which

translates to a value of $52.2 million over 16 months.

This research estimates the value of grassland recreation in the U.S. at a broad geographic

scale tying grassland recreation to weather as a first step toward identifying and valuing
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potential impacts from climate change. The dearth of research on grassland recreation

in general may be due in part to limited data availability. Even for publicly accessible

grasslands managed by large federal agencies, visitation data at the monthly or annual level

is unavailable with few exceptions. Likewise, climate change is expected to impact outdoor

recreation (Hicke et al., 2022) but measures of its impacts for many recreation types and

settings are non-existent because of intensive data requirements (Chan and Wichman, 2022).

Grassland recreation may be particularly sensitive to climate change as grasslands naturally

offer few of the on-site adaptation opportunities available in other settings like forests (e.g.,

shade trees) and beaches (e.g., bodies of water) to mitigate increasing temperatures.

This research has implications for policy-making and natural capital accounting. The

question of whether climate change will produce net benefits or costs to outdoor recreators

is far from settled and may be highly specific to the setting and activity (Chan and Wichman,

2022). If the welfare damages (or gains) to outdoor recreators can be incorporated into the

calculation of the social cost of carbon, it will be necessary to understand the relationship

between climate and weather for a variety of settings and activities. This research is also

relevant to tracking the impacts of climate change on the economy. In January 2023, the

White House released its plan to develop a set of natural capital accounts for the country

to track how the flow of goods and services within the economy impact our stock of natural

capital (Office of Science and Technology Policy et al., 2023). In doing so, it recognized that

natural capital is an integral part of a healthy, functioning economy requiring us to develop

a better understanding of the relationship between its status and our decisions especially

in the face of anthropogenic events like climate change. Most relevant for this research, it

also shows that grasslands would be one of the last environmental sectors for which a pilot

natural capital account is developed because of the time it will take to conduct the necessary

research.

Some research has identified causal relationships between weather and outdoor recreation,

finding that extreme heat reduces visits but that responses to extreme heat vary across
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historically colder and warmer climates. The same research generally also finds climate

change is likely to provide a net benefit to outdoor recreators. However, the related literature

is small and reduced form methods are prevalent, which limits our understanding of how

weather changes impact welfare. Reduced form methods dominate this small literature

primarily because they require less information on individual decision-makers and decisions

(Chan and Wichman, 2022). Structural methods like travel cost models require knowledge

of the cost of traveling to a recreation site, which includes time spent traveling, the value of

the individual’s time, and the cost of operating a vehicle; the most readily available datasets

rarely contain this information. Although the data is more readily available, Chan and

Wichman (2022) show that using reduced form methods can lead to underestimates of the

welfare impacts of climate change on outdoor recreation. There is also suggestive evidence

that whether a study finds a net benefit or net loss from climate change can depend on the

methodological approach (Dundas and von Haefen, 2020, 2021; Chan and Wichman, 2022).

This research is one of only four extant structural analyses on outdoor recreation, weather,

and climate change and only the second to conduct this type of analysis using big data. The

big data I use comes from StreetLight Data1 and is a panel of visit estimates from local

U.S. Census Block Groups (CBGs) to 16 nationally notable grasslands (see Figure 1) over

40 months. StreetLight aggregates data from mobile devices and other sources and uses a

ground-truthed machine learning method to estimate vehicle traffic on roads and at user-

designated areas. Because this data goes beyond a simple count of the number of devices

visiting a site and produces estimates of actual visitation, it is possible to construct the more

holistic picture of recreation needed to estimate a structural model. Likewise, visit estimates

for these sites are linked to CBGs allowing the researcher to create a representative travel

cost value for each CBG based on CBG-specific demographic and travel time and distance

estimates.

One advantage of performing a structural analysis is the ability to estimate welfare mea-

1streetlightdata.com
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sures and demand impacts simultaneously; I estimate a repeated discrete choice travel cost

model (Morey et al., 1993) to value grassland recreation among households living within a

day’s drive of the 16 nationally notable grasslands. I find that household willingness to pay

(WTP) for access to any of the 16 nationally notable grasslands is on average about $53.60

per visit - over 5 times as much as the estimate from Wells (2023) and almost double the

value of a coastal fishing visit (Dundas and von Haefen, 2020). At approximately 385,000

visits annually, the annual average recreational value is $20.6 million.

To identify the relationship between grassland recreation demand and contemporaneous

weather, I use a binning approach for four weather variables (average temperature, rainfall,

average wind speed, and snowfall) and fixed effects for each grassland, the months of the year,

and hunting seasons. I find that grassland recreation demand generally responds to temper-

ature as in previous outdoor recreation and weather studies. That is, demand decreases in

response to increasing numbers of extremely cold (< 20 ◦F) or hot days (≥ 80 ◦F) in a month.

Each additional day of extremely cold or hot average temperatures in a month relative to

additional days in the 60 - 65 ◦F range decreases WTP for grassland visits by about $1 and

$0.60, respectively. The result for snowfall is also intuitive as demand decreases with an

increasing number of days with extreme amounts of snowfall (≥ 0.25 inches). Rainfall and

wind speed have no significant impact on grassland recreation demand. Grassland recreators

tend to also be indifferent between recreating in months with an increasing number of days

with slightly less extremely cold average temperatures (20 - 30 ◦F) and months with more

days in the more pleasant 60 - 65 ◦F range.

I explore heterogeneous responses to average temperature and snowfall across climates

using interactions between the average temperature and snowfall bins and indicators for

grasslands in warmer or colder climates. There are two climate categories. I identify a

grassland as being in a warmer climate if its 30-year cooling degree day (CDD) normals

are above the 50th percentile among the 16 nationally notable grasslands in the sample and

identify a grassland as being in a colder climate similarly. Grassland recreators with access to
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grasslands in warmer climates tend to be more responsive to temperature than recreators in

colder climates. Grassland recreators in colder climates also appear to drive the unintuitive

result on preferences for average temperatures in the 20 - 30 ◦F range from the model without

climate interactions. Grassland recreators in colder climates have a significant preference for

grassland recreation in months with fewer days of extreme snowfall. On average, WTP for

a grassland visit goes down by $1.15 for each additional day of extreme snowfall relative

to days of no snowfall among recreators in colder climates. There is no significant change

in WTP for additional days of either light (0.01 - 0.25 inches) or extreme snowfall among

recreators in warmer climates.

The ultimate goal of this research is to understand how climate change could impact

grassland recreation in the U.S. Assuming uniform increases in average temperature across

grasslands by the end of the century the net impact of climate change on grassland recreation

in terms of welfare is expected to be small but positive with more ambiguous impacts on

visit demand. Under the most extreme warming scenario, average annual net gains from

climate change would be about $52,000 with a 95% confidence interval of -$300,000 to $1.3

million. As in previous studies on outdoor recreation, weather, and climate change, welfare

gains from climate change are likely to derive from reducing the number of extremely cold

days, which is especially true here as grassland recreators show a preference for slightly less

extremely cold temperatures. Given its ambiguous impact on visit demand, welfare gains

from climate change are also likely to come from visit quality enhancements rather than visit

quantity increases.

2 Literature Review

Reduced form modeling in the context of outdoor recreation, weather, and climate change

involves the researcher estimating a causal model of the relationship between weather and

outdoor recreation without simultaneously estimating welfare parameters. Researchers cal-
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culate welfare measures in these studies using a “back of the envelope” benefit transfer

process (Chan and Wichman, 2022). Reduced form studies are more prevalent in the litera-

ture because they allow researchers to take advantage of large administrative datasets (e.g.,

Loomis and Crespi, 1999; Mendelsohn and Markowski, 1999; Whitehead and Willard, 2017)

and innovative big datasets (e.g., Chan and Wichman, 2020; Wilkins et al., 2021; Parthum

and Christensen, 2022).

These datasets often do not include the information researchers need to estimate struc-

tural recreation models. For example, Wilkins et al. (2021) construct a dataset of visits to

public lands in the U.S. (including national grasslands) from geotagged photos posted on

Flickr to estimate the relationship between climatological mean maximum temperature at a

site and recreation demand. Although the goal of the research was not welfare estimation,

the researchers would have been limited in their ability to produce welfare estimates because

very little is known about the Flickr user beyond where and when the photo was taken.

Also notably, the authors do not report national grassland-specific estimates but do project

increases in outdoor recreation demand in winter and reductions in summer under climate

change. The result in Wilkins et al. (2021) is generally consistent with reduced form stud-

ies estimating welfare effects including Whitehead and Willard (2017) and Mendelsohn and

Markowski (1999). For saltwater recreational fishing in the U.S., Whitehead and Willard

(2017) estimate annual welfare gains of about $2.5 billion from a uniform 4.5 °F temperature

increase and a 7% increase in precipitation across the country. Under an identical climate

change scenario, Mendelsohn and Markowski (1999) predict net gains of about $2.8 billion

annually across seven activities (including skiing).

Despite their relative ease of application, Chan and Wichman (2022) show that welfare

estimates from reduced form analyses can underestimate the predicted gains or losses relative

to structural analyses. The potential for disparities in welfare estimates between reduced

form and structural analyses is evidenced in a comparison between Whitehead and Willard

(2017) and Dundas and von Haefen (2020). Dundas and von Haefen (2020) in one of the few
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other extant structural studies on the relationship between weather, outdoor recreation, and

climate change2 estimate the causal relationship between weather and shoreline recreational

fishing in the Eastern U.S. using a large administrative dataset. The dataset differs from

Whitehead and Willard (2017), but the setting is similar enough that it is reasonable to

expect similar estimates for the welfare impacts of climate change. However, Dundas and

von Haefen (2020) find that under the most optimistic climate change scenario, between

2050 and 2079 people participating in shoreline fishing would lose on average, $49 million

in welfare annually. The 95% confidence interval around the estimate includes a maximum

annual welfare gain of only $13.8 million, well below the $2.5 billion gain Whitehead and

Willard (2017) estimate. In another study, Dundas and von Haefen (2021) show that even

within the structural modeling framework, the choice to model recreation demand as a linear

function of temperature could produce similar disparities in welfare estimates. Welfare esti-

mates from reduced form analyses most often predict gains from climate change to outdoor

recreators, but this result is not robust to changes in methodology. This research contributes

to the literature an additional structural model of weather and outdoor recreation using an

innovative big dataset. It provides further insight into potential impacts from climate in its

setting (i.e., grassland recreation) and whether predicting gains from climate change persists

across methodologies.

This research also contributes to an emerging area of interest within the outdoor recre-

ation and climate change literature concerning response heterogeneity among people adapted

to different climates. In a reduced form analysis of global outdoor recreation response to

temperature based on mobility data, Linsenmeier (2024) shows that assuming uniformity

in the response of outdoor recreation demand to temperature across climates approximates

the climate-specific response well at moderate temperatures but deviates more significantly

at the extremes. The author suggests adaptation as a likely mechanism for the deviation

2The others are Earle (2023), which focuses on recreation at U.S. national parks and uses data from the
National Park Service, and Gellman et al. (2024), which examines camping decisions at federally managed
public lands in the U.S. with a big dataset on reservations from recreation.gov.
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and that the uniformity assumption is likely to lead to underestimation of benefits to out-

door recreators from climate change. I use variations from normal weather across a range

of climates to identify universal weather response functions for grassland recreation but also

apply a technique common to the health economics literature (see Heutel et al., 2021) to

identify heterogeneity in responses to temperature and snowfall across two climate regions.

3 Repeated Discrete Choice Model

In the repeated discrete choice model of grassland recreation demand, I specify the utility a

representative household in census block group (CBG) i derives from visiting a grassland j

on choice occasion t as:

Uijt = δj + βtcij + γTempjt + ξRainjt + ωWindjt + κSnowjt + τ + εijt (1)

where tcij is the cost of round-visit travel from CBG i to grassland j, δj is a grassland

fixed effect, Tempjt, Rainjt, Windjt, and Snowjt are vectors of grassland-month specific

temperature, rain, wind speed, and snowfall bins, and τ is a set of fixed effects for month-of-

year, big game hunting seasons, and waterfowl hunting seasons. This approach to identifying

the causal relationship between weather and grassland recreation draws on Dundas and von

Haefen (2020). As in this earlier work, I use fixed effects to control for climate (δj) and

average weather patterns at the time the visits occurred to identify the impact of abnormal

weather on outdoor recreation. I also include fixed effects for big game and fowl hunting

seasons3 to control for increased recreational demand that is likely to be correlated with

3Among the 16 nationally notable grasslands I study here, all but the Tallgrass Prairie National Preserve
allow hunting. The remaining 15 grasslands allow hunting according to state regulations. For the big game
hunting fixed effect, I focus on deer (white-tailed and mule) and elk hunting seasons. Other popular big
game species I considered were black bears and pronghorns. Deer and elk harvesting rates are much higher
in the relevant regions than black bear hunting (Flather et al., 2013), which may suggest lower supply or
tighter regulations on harvest. It also suggests that black bear hunting is less likely to drive demand for
grassland recreation. Flather et al. (2013) note that private land holds most of the pronghorn habitat, which
also eliminates hunting for the species at the 15 relevant grasslands. I do not consider elk hunting for Texas
and Oklahoma as elk are not commonly found in those states. For the fowl hunting fixed effect, I focus on
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colder temperatures and snowfall. These fixed effects are essentially state by month-of-year

fixed effects only applying to months in which that state allows hunting for at least one of

the target big game or fowl species.

To understand heterogeneous responses to weather across different climate regions, I also

specify visit utility as:

Uijt = δj + βtcij + γ1Tempjt × 1(CDDUpperj) + γ2Tempjt × 1(CDDLowerj)+

ξRainjt + ωWindjt+

κ1Snowjt × 1(CDDUpperj) + κ2Snowjt × 1(CDDLowerj) + τ + εijt (2)

where 1(CDDUpperj) indicates that grassland j is in the upper 50th percentile of sites in

terms of 30-year CDD normals and 1(CDDLowerj) indicates that grassland j is in the lower

50th percentile. 30-year CDD normals are the average number of annual CDDs between

1992 and 2021. A CDD represents a one-degree positive difference between the average

daily temperature and 65 °F. The number of CDDs per day increases linearly as average

daily temperature increases and is zero for average daily temperatures below 65 °F. This

approach to understanding heterogeneity in responses to weather follows Heutel et al. (2021)

who examine how the number of deaths in response to different temperatures varies across

climates within the U.S. I only interact the temperature and snowfall bins with the climate

indicators because they are most related to climate as described by CDD normals and the

most likely sources for heterogeneous responses across climates.

As a random utility maximization (RUM) model, utility in Equations (1) and (2) can be

decomposed as:

Uijt = Vijt + εijt (3)

where Vijt is observable and εijt is not. The repeated discrete choice model includes an

wild turkeys and ducks. Ducks are hunted in all states containing a relevant grassland except Wyoming.
Wild turkeys are especially popular for hunting in the Southern region that includes Texas and Oklahoma
(Flather et al., 2013), which offsets any potential imbalance created by including the elk harvest.
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opt-out alternative, j = 0, which accounts for all other activities a household could engage

in beside visiting one of the grasslands in their choice set. A household’s choice set includes

any of the 16 nationally notable grasslands that they could visit on a day visit. Utility for

the opt-out alternative is as in Equations (1) and (2), however, all parameter values are

normalized to zero for identification. Assuming the error terms are distributed Generalized

Extreme Value produces the nested logit specification (McFadden 1978) with the probability

of a representative household from CBG i visiting a grassland j in a month being:

Pijt =

(
e

Vijt
θ∑K

k=1 e
Vikt
θ

)
[∑K

k=1 e
Vikt
θ

]θ
eVi0t +

[∑K
k=1 e

Vikt
θ

]θ
 (4)

where θ is the dissimilarity parameter. The first term in parentheses is the conditional

probability of a household visiting grassland j given that they chose to visit. The second is

the probability of a household choosing to visit any grassland. All alternatives for grassland

recreation (i.e., ∀j ̸= 0) are grouped into the visit nest with the opt-out alternative occupying

its own nest. The dissimilarity parameter indicates how substitutable the alternatives within

the visit nest are relative to the opt-out alternative. For consistency with RUM theory, the

dissimilarity parameter should be between 0 and 1. A dissimilarity parameter equal to

1 implies that the nested logit is equivalent to the conditional logit. I estimate the model

parameters using a maximum likelihood routine in the apollo package in R (Hess and Palma,

2019). WTP for a grassland visit is −1/β (Dundas and von Haefen, 2020). I calculate the

per-visit welfare impacts implied by weather changes as

∆WTP = −η

β
(5)

where η represents a causal parameter from Equations (1) and (2) (i.e., γ, γ1, γ2, ξ, ω, κ,

κ1, or κ2) (Haab and McConnell, 2002).
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4 Data

4.1 Defining the Grassland Choice Set

Accurately defining the choice set visitors consider when deciding where to recreate is essen-

tial to producing reliable welfare estimates from any RUM model of recreation. Current best

practice for defining a choice set suggests including as many substitutes as possible (Lupi

et al., 2020). Parsons et al. (2000) explore the effect of narrowing the choice set definition on

welfare estimates in the context of lake site closures. They find that the effect depends on

both substitutability and market size. Higher levels of substitutability between included and

excluded sites leads to overestimation of welfare impacts. Market size reductions resulting

from site exclusion leads to underestimation of welfare impacts. Although Parsons et al.

(2000) do not explore the effect of choice set definition on welfare estimates for changes in

site quality (e.g., changes in weather) it is likely that narrowing the choice set would produce

less overestimation bias because recreators can still visit the site at reduced (or improved)

quality.

Defining a choice set for grassland recreation is difficult because many recreational activ-

ities conducted on grasslands (e.g., walking, biking, snowshoeing) are highly substitutable

to non-grasslands. There are also numerous grassland sites between which recreators could

substitute. The most comprehensive list of recreational grassland sites in the U.S. includes

thousands of sites across 36 states (Adelman and Schwartz, 2013). Many of these grasslands

are small (< 1,000 acres) and more comparable to community parks than the 16 nationally

notable grasslands at the center of this research. For reference, the smallest of these grass-

lands, McClellan Creek National Grassland in Texas, is just over 1,000 acres and larger than

about 70% of grasslands open to the public in the three major grassland regions in which

the sites are located (Martinez et al., 2024; Adelman and Schwartz, 2013). I focus on this

subset of grasslands to isolate the effect of weather on grassland recreation and limit sub-

stitutability between grasslands and non-grasslands. The choice set for households in each
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CBG includes any of these 16 grasslands within a day’s drive. Visiting a nationally notable

grassland is a different experience from visiting a smaller grassland because of its size and

the activities available to recreators (e.g., hunting), so excluding these smaller grasslands

from the choice set should have little effect on resulting welfare estimates. The remaining

potential substitutes include large grasslands and non-grasslands.

I am aware of three large grasslands near the target 16 that are potential substitutes

but excluded from the choice set: Cedar River National Grassland, Grand River National

Grassland, and Konza Prairie. I collect data on Cedar River and Grand River national

grasslands but exclude them from the final sample because there are months for which the

estimated number of recreational visits was zero. These sites are also located along the North

Dakota-South Dakota border making them potential substitutes for some of the more popular

grasslands in the potential choice set: Little Missouri National Grassland and Buffalo Gap

National Grassland. Because of their limited visitation and substitutability to other sites

in the choice set, I expect the exclusion of Cedar River and Grand River national grassland

to have little impact on the welfare estimates from this analysis. Likewise, Konza Prairie is

likely to only be a substitute for the Tallgrass Prairie National Preserve based on its location

in Manhattan, Kansas. The effect of excluding Konza Prairie from the choice set is more

ambiguous than the effect of excluding Cedar River and Grand River national grasslands

because including Konza Prairie would likely increase the size of the market for grassland

recreation.

The final group of substitute sites whose exclusion from the choice set may affect the

resulting estimates is non-grasslands. As I noted, grassland recreation is generally substi-

tutable to non-grassland sites. Substitution to non-grassland sites may also become more

preferred as temperatures increase and recreators look for ways to mitigate the heat. There

are many non-grassland sites near the 16 target grasslands, and I expect their exclusion will

have an impact on the results of this analysis though the magnitude and sign of that impact

is ambiguous. I am exploring this issue in an extension to this research, which I discuss more
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in the conclusion (Section 6).

4.2 StreetLight Data: Description and Comparison to NPS Data

Unlike the settings for most other structural studies on the relationship between weather

and outdoor recreation, there are no large administrative datasets for grassland recreation.

Instead, I use mobility data from StreetLight Data. StreetLight is a data provider using

a variety of mobility data sources (including mobile devices and connected vehicles) and

machine learning models to produce estimates of vehicle, bicycle, and pedestrian traffic.

StreetLight acquires its mobility data as well as ground-truth traffic counter data from

other companies. It then uses an Extreme Gradient Boosting machine learning algorithm to

predict the number of actual vehicle counts on a road or in a specific area (StreetLight Data,

2022a,b). Predictors for actual vehicle counts include the mobility data, demographics of the

relevant population, and weather. To obtain the desired estimates, StreetLight subscribers

define sites and select the type of estimates to produce in their InSight data portal.

StreetLight uses common model fit statistics and a 10-fold cross-validation procedure to

evaluate the prediction accuracy of their models. For 2019-2021, their models explained 98%

of the variation in observed traffic counts. All but three of the grassland sites in this analysis

have predicted annual average daily traffic values between 0 and 499. For roads or areas

at this traffic level, StreetLight’s models have a mean absolute percentage error (MAPE) of

20.6 with bias estimates that suggest the model is likely to overestimate the vehicle counts

at this traffic level. The three remaining grassland sites have estimated annual average daily

traffic values between 500 and 1,999 and between 2,000 and 4,999. The MAPEs for these

traffic levels are 14.9 and 12, respectively, with accompanying bias estimates suggesting

overestimation is more likely to occur than underestimation.

StreetLight presents data on the representativeness of its sample in terms of the sample

penetration rate: the percent of people living in a census tract with mobile devices appearing

in the sample (StreetLight Data, 2020). Based on data from 2019, the national sample
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penetration rate was about 10% of the U.S. population. The sample penetration rate was

slightly higher in rural census tracts at 12.2% compared to 10.2% for urban tracts. In terms

of race and income, at worst, census tracts with higher proportions of non-white residents

have 3% lower sample penetration rates than the national average, and people living in

census tracts where average household income is $20,000-$35,000 are sampled at a slightly

lower rate than the national average ( 8%). Furthermore, StreetLight found no correlation

between the percent of people over 70 in a census tract and the sample penetration rate

suggesting that elderly people are just as likely to be sampled as others.

Even though a large administrative dataset does not exist for grassland recreation in

general, there is administrative data available on visits to the Tallgrass Prairie National

Preserve. The National Park Service (NPS) manages the Tallgrass Prairie National Preserve.

NPS publishes monthly visit estimates for the sites it manages. Conversely, the Forest

Service, which manages national grasslands, collects visitation data every five years and

mostly at the national forest level making it impossible to distinguish national grassland

recreation from recreation at other sites within the forest (English et al., 2020). A comparison

between two visit estimates from NPS and the StreetLight Data estimates is presented in

Figure 2. The dashed line represents the NPS estimates for the number of individual visitors

to the grassland in a month. The dashed and dotted line represents the NPS estimates

for the number of vehicles visiting the grassland in a month. The solid line represents the

StreetLight estimates for each month. The StreetLight estimates more closely align with the

NPS vehicle count and StreetLight estimates mostly exceed the NPS vehicle counts. NPS

only conducted vehicle counts at one site within the preserve and it is possible that the

difference between NPS and StreetLight estimates occurs because not all vehicles visiting

the Tallgrass Prairie National Preserve stopped there during their visits (U.S. National Park

Service, 2022). Although double counting could be inflating the NPS individual visit counts,

it seems that StreetLight estimates more closely align with the vehicle counts. This informs

my decision to frame the StreetLight estimates as household-level decisions rather than
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individual-level decisions, which I discuss in more detail in the subsections to follow.

4.3 Grassland Visitation Data

To collect visit count estimates for the 16 grasslands in this analysis for each month between

January 2019 and April 2022, I create a shapefile using the Protected Areas Database of the

United States (U.S. Geological Survey, 2021) for entry in StreetLight’s data portal. I perform

an Origin-Destination analysis in the data portal using the grassland sites as destinations

and the set of 2020 CBGs as origins. Origin-Destination analyses produce estimates for

the number of visits starting in the origin and ending in the destination during a specified

period. From this analysis, I recover average daily visit estimates for each grassland-CBG-

month combination with at least one estimated visit per day. To calculate an estimate for

the number of visits in a month, I multiply the average daily visits by the number of days

in each month. To limit the sample to recreational visits, I then multiply the monthly visit

estimate by the proportion of visits from each CBG to the grassland that were from an

individual’s home to a non-work location. In determining an individual’s home location,

StreetLight Data (n.d.) relies on the location of the device overnight during the relevant

month and assigns a home location probability to the 5 most likely home CBGs for each

device. Summary statistics are presented in Table 1 and the distribution of visit counts

per month for each grassland is shown in Figure 3. Both show a wide range of visitation

intensity levels across sites. The most intensively visited site is Little Missouri National

Grassland followed by a group of 4 sites with average monthly visits between 3,000 and

4,000 (Buffalo Gap National Grassland, Lyndon B. Johnson National Grassland, Pawnee

National Grassland, and Thunder Basin National Grassland). The remaining grasslands

range from about 200 to just over 1,000 monthly visits.
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4.4 Supplementing StreetLight Data

Because the visit estimates from StreetLight are estimates of the population values and not

merely counts from a subsample of the population, I consider them representative of the

market for visits to each of these grasslands. I assume that each estimated visit in the data

corresponds to a visit a household made from their home CBG to the grassland. A full

picture of the market would include non-visitors. The StreetLight data is only concerned

with visitors. To construct a full picture of the market, I collect data on households living

in the set of CBGs from the U.S. Census Bureau (2020, 2021) American Community Survey

(ACS) 5-year estimates using the censusapi package in R (Recht, 2024). This data includes

the number of adults (18 and over), number of households, and annual household income.

I identify visiting CBGs based on the StreetLight data. I calculate the one-way travel time

and distance for each CBG to potential substitutes within the choice set using the osrmtime

package in Stata if the CBG-grassland pair does not appear in the StreetLight data (Huber

and Rust, 2016)4. CBG-grassland pairs with one-way travel times exceeding the longest

one-way travel time (5 hours) in the StreetLight data are removed.

4.5 Calculating Travel Cost

I calculate travel cost for each CBG-grassland pair as

tcijt =
1

3

(
hhincit
2080

)
travtimeijt + opercostt × travdistijt (6)

where hhincit is average household income in the CBG at the time of the visit, opercostt

is the per-mile vehicle operation cost, and travtimeijt and travdistijt are round-visit travel

time and distance in hours and miles. Average household income varies semi-annually for

each CBG because I use household income from the 2020 U.S. Census Bureau American

Community Survey (ACS) to describe household income in 2019 and 2020 and household

4The osrmtime package uses the Open Source Routing Machine to calculate travel time and distance.
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income from the 2021 ACS to describe household income in 2021 and 2022.5 Travel time

and distance may vary monthly for visiting CBGs because StreetLight produces estimates

for each month. If I compute the travel time and distance manually, it is constant across

months. Vehicle operating cost includes the per-mile fuel, maintenance, and depreciation

cost (American Automobile Association, 2019, 2020, 2021, 2022) as is best practice (Lupi

et al., 2020).

4.6 Weather Data

I construct fourteen 5 °F daily average temperature bins and three 0.25-inch daily rainfall

bins for each site in each month using data from the Parameter-elevation Regressions on

Independent Slopes Model (PRISM) Climate Group (2023). I use the National Weather

Service’s (2024b) National Gridded Snowfall Analysis dataset to construct three 0.25-inch

daily snowfall bins as well. Both average temperature and rainfall are calculated as daily

averages across the 2.5-mile×2.5-mile PRISM grid cells within the boundary of each grass-

land. Snowfall is calculated as a daily average across the 2.5-mile×2.5-mile National Gridded

Snowfall Analysis grid cells within each grassland’s boundary.

In addition to the bins for average daily temperature, rainfall, and snowfall, I construct

bins for average wind speed. Wind speed is an important control in identifying the relation-

ship between grassland recreation and weather in the context of climate change. Because

grasslands tend to be treeless, grassland recreators may be particularly exposed to wind.

Pleasant breezes may also mitigate the effect of hotter temperatures on grassland recreators.

Zeng et al. (2019) show that average annual surface wind speeds slowed between 1978 and

2010 but began an upward trend in 2010 that persisted through the end of their dataset

in 2017. Although Zeng et al. (2019) are agnostic about the relationship between climate

change and wind speed trends, it is possible that the effect of changes in wind speed could

5If average household income is unavailable for a CBG in either 2020 or 2021, I replace the missing value
with the value for the non-missing year. If average household income is unavailable for both years, I replace
the missing values with per-capita income.
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be confounded with climate change impacts because wind speed trends persist over multiple

decades just as changes in climate are observed over similar time spans. I collect daily aver-

age wind speed data for each grassland during the study period from gridMET (Abatzoglou,

2013). I construct three average wind speed bins. The first bin counts the number of days in

a month where average wind speed is strictly below 8 MPH, the second counts days where

average wind speed is between 8 and 13 MPH, and the final bin counts days where average

wind speed is at or above 13 MPH. Meteorologists and weather observers use the Beaufort

Scale to describe wind speeds (U.S. National Weather Service, 2024a). Wind speeds below

8 MPH correspond to calm to light breeze conditions. Wind speeds between 8 and 13 MPH

correspond to a gentle breeze. Wind speeds at or above 13 MPH correspond to moderate

breeze to strong breeze conditions.

Figure 4 shows the distribution of each weather variable across the 16 nationally notable

grasslands during the study period. Average daily temperature (Figure 4a) has a bi-modal

distribution with frequency peaks in the 40-45 °F and 70-75 °F bins. Figure 5 shows the

temperature distribution for each grassland by climate. I define climates based on 30-year

CDD normals. These values range from 420 for Little Missouri National Grassland to 2253 for

Lyndon B. Johnson National Grassland. I calculate 30-year CDD normals based on PRISM

Climate Group (2023) data. Figures 6 and 7 show monthly average daily temperature and

total visits for Little Missouri and Lyndon B. Johnson (LBJ) national grasslands. In both

cases, visit peaks do not occur in peak average temperature months and tend to coincide

with hunting seasons. Figures 4b and 4c show that the grasslands I focus on received little

rainfall or snowfall during the study period. Figure 4d shows that on most days during the

study period average wind speed was in the calm to light breeze category. Average daily

wind speed does not exceed 31 MPH at any of the grasslands during the study period.
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5 Results & Discussion

5.1 Demand for Grassland Visits, Value, and Weather

Parameter estimates for the model without climate interactions (Equation 1) are presented

in Table 2. Across all three specifications, the travel cost parameter is negative, and the

dissimilarity parameter is between zero and one, as theory predicts. Estimates for both

parameters are also statistically different from zero. The average temperature bin estimates

generally follow the inverted-U shape common to temperature response functions in the

literature (see Figure 8). The further the average temperature is from the base temperature

bin (60 - 65°F), the less households prefer to visit a grassland, except for average temperatures

in the 20 - 25°F and 25 - 30°F bins. The estimates suggest that households are indifferent

between (or prefer) visiting a grassland in months when there are additional days in this

slightly less extremely cold average temperature range and visiting when there are additional

days in the reference bin. This result is robust to the inclusion of the big game and fowl

hunting season fixed effects, which suggests that correlation between colder temperatures

and strictly defined hunting seasons is not causing the unintuitive result.

Rainfall is not a significant predictor of demand for grassland recreation in either speci-

fication with month fixed effects nor is wind speed. An additional day with small amounts

of snowfall (0.01 - 0.25 inches) relative to no snowfall has a positive and significant effect on

monthly demand. An additional day of snowfall at or above 0.25 inches of snowfall has a

negative and significant impact on monthly demand. Despite opportunities to participate in

snow-related activities at grasslands, it may be that these grasslands are sufficiently rural to

make traveling for recreation more difficult in snowy conditions deterring potential visitors.

It could also be that participating in certain snow-related activities (e.g., cross-country ski-

ing) is more enjoyable when there is snow on the ground, but not when it is snowing heavily.

The results from the specifications including month-of-year fixed effects (Columns 2 and 3)

are roughly equivalent, but I focus my discussion of welfare impacts on the specification
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including hunting season fixed effects.

WTP impacts from weather changes based on the specification in Column 3 are presented

in Figure 8 and Table 3. The WTP estimates for the weather parameters represent the per-

visit welfare loss (or gain) for a household if there was an additional day in a month in

the relevant average temperature range rather than the reference range. For example, if

there was an additional day in a month where the average temperature was at or above

80°F, households would lose about $0.60 per visit relative to an additional day in the 60 -

65 ◦ range. Given per visit WTP for grassland visits is $53.60, this would amount to an

approximately 1% decrease in the use value of a grassland visit per additional day at or

above 80°F. For reference, the results in Dundas and von Haefen (2020) suggest that an

additional day in the extreme temperature range in 2004 would decrease WTP for coastal

fishing in the Southeastern U.S. by about $0.25. In an average month, there are 32,043

visits to the 16 nationally notable grasslands. The total use value of those visits is nearly

$1.72 million. With an additional day of extreme temperatures in an average month, visiting

households would lose over $19,000 in welfare from the change in quality of the grassland

experience assuming they still decide to visit. The expected net gain or loss from climate

change will depend on changes in the entire distribution of temperature, which I explore in

the next subsection. Table 3 shows that the only other significant impact on welfare from

weather is from additional days of snow at or above 0.25 inches. This is another source of

potential gains to grassland recreators from climate change as snowfall would likely decrease

with increasing temperatures.

I use interactions between the temperature and snowfall bins and indicators for whether

a grassland was above or below the 50th percentile in 30-year CDD normals to examine het-

erogeneous responses to weather across climates. Grasslands above the 50th percentile have

relatively warmer climates than grasslands below the 50th percentile. This model does not

include the hunting season fixed effects for identification purposes but retains the site and

month-of-year fixed effects. The travel cost and dissimilarity parameter estimates are essen-

20



tially identical to the estimates from the other specifications. Per visit WTP and marginal

WTP impacts from non-temperature weather variables are reported in Table 4. The WTP

impacts from rain and wind are similar to those from the model without climate interactions.

The first evidence of heterogeneity in responses to weather is in the difference between WTP

for visits under increasing amounts of snowfall. For grasslands in colder climates, households

are willing to pay significantly less for a grassland visit for each additional day with snow-

fall greater than or equal to 0.25 inches. The estimated loss of $1.15 per additional day of

high snowfall is also significantly less than the estimated gain of $0.99 households in warmer

climates would see from an extra day of similar snowfall levels.

Preferences for grassland visits under moderate temperatures tend to align across the

two climate regions (Figure 9). Significant divergence in WTP occurs at more extreme

temperatures. This result is consistent with Linsenmeier (2024) except that households with

access to grasslands in colder climates appear to value grassland recreation more in some

higher temperature ranges than households in warmer climates. Access to non-weather

dependent substitutes may drive this result. The most visited grassland among those in

colder climates is Little Missouri National Grassland in Western North Dakota. The most

visited grassland among those in warmer climates is Lyndon B. Johnson National Grassland

just outside of the sprawling Dallas-Fort Worth metropolitan area in Texas. Households who

can visit LBJ National Grassland probably have more non-weather dependent recreational

substitutes to grassland recreation than households who can visit Little Missouri National

Grassland making LBJ visitors more responsive to warmer temperatures.

5.2 Climate Change Impacts on Visits and Welfare

I project annual climate change impacts on grassland visits and related welfare using three

warming scenarios for 2081 - 2100 from the Intergovernmental Panel on Climate Change

(IPCC, 2023). The three warming scenarios predict increases of 2.52 ◦F, 4.86 ◦F, and 7.92

◦F over 1850-1900 global surface temperature levels and correspond to very low, interme-
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diate, and very high greenhouse gas emissions scenarios. Using the difference between the

predictions for 2081 - 2100 and the global warming that has already occurred ( 1.96 ◦F), I

increase the average daily temperature at each grassland for each day in the study period

and recount the temperature bins to get the predicted temperature distribution. I invoke

the ceteris paribus assumption for all other variables in the model and also assume that the

population of grassland recreators does not change between the study period (January 2019

- April 2022) and 2081 - 2100.

To predict visits under each scenario, I calculate

V isitsim =


[∑K

k=1 e
V̂ikt
θ̂

]θ̂
eV̂i0t +

[∑K
k=1 e

V̂ikt
θ̂

]θ̂
× Cim (7)

where Cim is the total visits households in CBG i made to any grassland in month m. Month

m is one of the 40 months in the original study period (January 2019 - April 2022). The

term in brackets is the probability that a household visits any grassland evaluated at the

estimated parameter values and relevant weather distribution. This procedure calculates

the number of visitors in the original study period who would still visit if the temperature

distribution during a given month changed according to each warming scenario. Following

Dundas and von Haefen (2020), I calculate the average number of visits for each month of the

year from 2019 - 2022 and sum the values to get average annual visits under each warming

scenario. I then take the difference between the predicted average annual visits under the

warming scenarios and the predicted number of visits under the observed conditions during

the study period. The change in average annual visits and 95% confidence intervals for

the mean estimates are shown in Table 5. I calculated the confidence intervals using the

Krinsky and Robb (1986) method with 1,000 draws. Average annual visits increase under

all three warming scenarios, but those increases are expected to be small (≤ 66 visits under

the very high emissions scenario). The 95% confidence intervals bound the predicted average
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annual gains (losses) in visits between -4,480 and 5,537, which is about a 1% change in either

direction given observed average annual visits of 385,000. For reference, Dundas and von

Haefen (2020) predict visit losses between 5.5% and 22.7% for coastal fishing over the same

time period and similar warming scenarios.

To predict welfare changes under each scenario, I follow Haab and McConnell (2002) and

Dundas and von Haefen (2020) and calculate compensating variation as

CVim = −1

η

ln
eV̂

∗
i0t +

[
K∑
k=1

e
V̂ ∗
ikt
θ̂

]θ̂− ln

eV̂i0t +

[
K∑
k=1

e
V̂ikt
θ̂

]θ̂× Cim (8)

where V̂ ∗
ikt is the observable portion of utility in Equation 1 evaluated at the estimated

parameter values and warming scenario temperature levels and V̂ikt is the observable portion

of utility evaluated at the estimated parameter values and conditions observed within the

study period. I calculate this value for each month, take the average by month and CBG, and

sum the values to obtain an estimate for the average annual compensating variation under

each warming scenario. These estimates are shown in Table 6 along with 95% confidence

intervals calculated by the Krinsky and Robb (1986) method with 1,000 draws. As in the

predicted visitation response, the point estimates for average annual compensating variation

are relatively small compared to studies on other activities, but the confidence intervals

provide more information on the range of outcomes we might expect under each scenario.

Although only two of three point estimates are positive, all of the confidence intervals skew

toward positive net benefits from climate change to grassland recreators. Under the very

high emissions warming scenario, grassland recreators could see as much as $1.3 million in

welfare gains annually.
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6 Conclusion

This research estimates the value of a visit to any of 16 nationally notable grasslands in the

U.S., the relationship between visit demand and weather, how that relationship varies across

climates, and how increasing temperatures from climate change could affect visit demand

and welfare among grassland recreators. I find that the value of a grassland visit is $53.60 per

household. This is the second estimate of grassland recreational value in the U.S. after Wells

(2023) and could inform the government’s development of a pilot natural capital account for

grasslands.

In terms of the relationship between weather and grassland recreation, I find average tem-

perature and total snowfall to be significant determiners of grassland visit demand. Grass-

land recreators prefer to visit a grassland when there are fewer days of either extremely

cold or hot temperatures, which is consistent with other studies on outdoor recreation and

weather. Interestingly, there is a slight preference for more days of slightly less extremely

cold average temperatures suggesting a possible avenue for gains from climate change. There

is a small positive effect of additional days of light snowfall (0.01 - 0.25 inches) on demand

relative to days of no snowfall, but snowfall above 0.25 inches significantly decreases demand.

Responses to temperature and snowfall across climates differ the most at or close to the

extremes, which is consistent with previous work (Linsenmeier, 2024). Grassland recreation

in colder climates drives the demand for grassland recreation at slightly less than extremely

cold average temperatures as well as the preference for grassland recreation in months with

fewer days of extreme snowfall. People living in warmer climates appear to be more respon-

sive to changes in temperature, which I attribute to increased substitution opportunities

to non-outdoor recreation because more of the grasslands in warmer climates are closer to

populated areas.

Climate change is expected to have little effect on grassland recreation demand and

related welfare on average. Under the most extreme warming scenario, point estimates

for net changes in average annual grassland recreation demand and compensating variation
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are increases of 66 visits and about $52,000, respectively. The confidence intervals around

these estimates suggest uncertainty that could see gains of up to 5,537 trips and about $1.3

million in welfare or losses up to 4,480 trips or about $300,000 in welfare under climate

change. The expected gains and losses from climate change for other outdoor recreation

activities and settings generally dwarf these estimates, but quantifying these impacts for

grassland recreation ensures that it can be counted if recreation values start to factor into

social cost of carbon calculations.

As I mentioned in Section 4.1, future work should explore how choice set definition

affects these results. I am working on an extension to this research that examines weather

responses at three of the nationally notable grasslands and set of grassland and non-grassland

substitutes like national forests and state parks. There are over 300 substitutes in the choice

set. This allows me to explore how substitution opportunities affect the results presented here

but also how substitution away from grassland recreation in response to warmer temperatures

may be a mechanism for adaptation to climate change.

Future work should also test whether my results are robust to my assumptions about

the spatial and temporal distribution of temperature increases, how other weather variables

change as climate changes, and the population in affected areas. Temperature is unlikely

to change uniformly across space and time. When and where temperature changes occur

will likely affect these results, especially given the heterogeneity in responses to temperature

across climates. Just as temperature is unlikely to change uniformly it is also unlikely

to change in a vacuum. Rainfall and snowfall will likely change with temperature and

similarly affect these results. Population changes could also affect demand for visits whether

population is expected to increase or decrease could meaningfully impact the magnitude of

the expected gains or losses from climate change to grassland recreation.
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Tables

Table 1. Summary statistics for grassland visitation data

Monthly Visits Travel Time (hrs) Travel Distance (mi.) Travel Cost ($)
Mean sd Min Max CBG Count Mean sd Mean sd Mean sd

Black Kettle NG 1,039 511 126 2,363 161 1.3 0.8 50.2 44.5 176.97 68.15
Buffalo Gap NG 2,875 1,158 1,243 5,610 205 1.4 0.7 53.5 38.5 173.21 98.75
Caddo NG 1,115 594 253 3,091 324 1.2 0.7 41.9 31.4 162.47 58.98
Cimarron NG 1,168 431 564 2,476 75 1.2 0.7 42.9 34.1 186.9 69.2
Commanche NG 1,022 435 463 2,240 174 1.4 0.9 56.8 54.3 228.07 91.31
Fort Pierre NG 467 246 85 1,167 47 1.0 0.6 32.0 36.8 195.62 87.55
Kiowa NG 349 164 98 704 68 1.3 1.0 49.3 55.0 207.86 63.34
Little Missouri NG 10,613 4,164 4,258 22,425 222 1.5 0.7 60.3 37.8 162.03 81.56
Lyndon B Johnson NG 3,997 1,310 2,035 7,424 953 1.2 0.6 41.6 23.2 132.80 61.03
McClellan Creek NG 380 329 56 1,468 116 1.1 0.5 41.8 21.2 157.76 72.98
Oglala NG 333 297 26 1,225 57 1.4 0.7 48.2 30.3 187.57 64.38
Pawnee NG 3,093 1,420 1,086 5,872 894 1.5 0.6 53.7 26.7 143.19 70.45
Rita Blanca NG 209 132 34 800 45 1.1 0.8 39.4 41.6 174.75 59.61
Sheyenne NG 706 524 20 2,457 167 1.1 0.6 37.0 25.6 144.38 94.73
Tallgrass Prairie Nat Pres 598 423 70 2,005 363 1.5 0.8 61.4 44.0 143.60 66.07
Thunder Basin NG 3,348 993 1,399 5,946 108 1.5 0.6 58.0 31.2 172.21 71.71

Note. Summary statistics describe monthly visit data from StreetLight data for each site between January 2019 and April 2022. Visits are trips from
households living in a CBG to a grassland. CBG count is the number of CBGs with households making a positive number of trips to a grassland in the study
period. Travel time and distance are one-way measures for visitors only. Travel cost is round-trip and includes visitors and non-visitors. NG = National
Grassland. CBG = U.S. Census block group.
Source. Author calculations (StreetLight Data, U.S. National Census Bureau, and Open Source Routing Machine)
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Table 2. Repeated discrete choice model results without climate interactions

(1) (2) (3)

Est. S.E. Est. S.E. Est. S.E.

Travel Cost −0.019*** 0.001 −0.019*** 0.001 −0.019*** 0.001

θ 0.505*** 0.019 0.504*** 0.019 0.505*** 0.019

Temperature (Ref: 60-65 ◦F)

< 20 −0.038*** 0.004 −0.021*** 0.005 −0.020*** 0.005

20-25 0.003 0.006 0.009 0.007 0.008 0.007

25-30 −0.007 0.005 −0.002 0.006 −0.001 0.006

30-35 −0.029*** 0.005 −0.025*** 0.006 −0.025*** 0.006

35-40 −0.019*** 0.004 −0.018*** 0.005 −0.017*** 0.005

40-45 −0.006 0.004 −0.002 0.004 −0.002 0.005

45-50 −0.003 0.004 −0.004 0.005 −0.003 0.005

50-55 −0.011** 0.005 −0.019*** 0.005 −0.016*** 0.005

55-60 0.001 0.005 −0.006 0.006 −0.004 0.006

65-70 −0.005 0.004 −0.010** 0.005 −0.008* 0.005

70-75 −0.003 0.003 −0.006 0.004 −0.005 0.004

75-80 −0.007** 0.003 −0.011*** 0.004 −0.009** 0.004

≥ 80 −0.010*** 0.003 −0.015*** 0.004 −0.011*** 0.004

Rainfall (Ref: < 0.01 in.)

0.01-0.25 −0.008*** 0.002 0.001 0.002 0.001 0.003

≥ 0.25 −0.008** 0.004 −0.001 0.004 0.000 0.004

Wind Speed (Ref: Calm)

Gentle Breeze 0.001 0.002 −0.001 0.002 −0.002 0.002

Moderate-Strong Breeze −0.004* 0.003 −0.003 0.003 −0.003 0.003

Snowfall (Ref: < 0.01 in)

0.01-0.25 0.010** 0.005 0.010** 0.005 0.009* 0.005

≥ 0.25 −0.005 0.005 −0.020*** 0.005 −0.020*** 0.005

N 268,117 268,117 268,117

LL −178,778 −178,706 −178,697

AIC 357,630 357,511 357,496

BIC 358,018 358,025 358,031

Site FEs × × ×
Month FEs × ×
Hunt FEs ×
Note. Standard errors are clustered at the census block group level. Parameters were estimated using a maximum likelihood

routine and two-level nested logit model in the apollo package in R (Hess and Palma, 2019).

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 3. Per visit willingness to pay (WTP) and marginal impacts from non-temperature
weather variables (no climate interactions model)

WTP 95% CI
Per Visit $53.60 $50.67 $56.53

Rainfall (in.)
0.01-0.25 $0.08 -$0.19 $0.35
≥ 0.25 -$0.03 -$0.47 $0.41
Wind
Gentle Breeze -$0.08 -$0.30 $0.14
Moderate - Strong Breeze -$0.16 -$0.47 $0.15
Snowfall (in.)
0.01-0.25 $0.48 -$0.02 $0.98
≥ 0.25 -$1.05 -$1.63 -$0.47

Note. WTP estimates based on the model with site, month-of-
year, and hunting season fixed effects and no interactions be-
tween weather variables and climate indicators. Weather WTP
values should be interpreted as the loss (gain) in use value if the
weather distribution changed such that a day in the reference
bin was replaced by a day in one of the other bins. I calculated
the 95% confidence intervals using the delta method.
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Table 4. Per visit willingness to pay (WTP) and marginal impacts from non-temperature
weather variables (climate interactions model)

WTP 95% CI
Per Visit $53.53 $50.61 $56.45

Rainfall (in.)
0.01-0.25 $0.07 -$0.20 $0.34
≥ 0.25 -$0.20 -$0.65 $0.25
Wind
Gentle Breeze $0.07 -$0.16 $0.29
Moderate - Strong Breeze -$0.05 -$0.37 $0.27
Snowfall (in.)
Below 50th Percentile (CDDs)
0.01-0.25 $0.04 -$0.50 $0.58
≥ 0.25 -$1.15 -$1.78 -$0.53
Above 50th Percentile (CDDs)
0.01-0.25 $0.36 -$1.07 $1.79
≥ 0.25 $0.99 -$0.37 $2.36

Note. WTP estimates based on the model with site and month-of-
year fixed effects with interactions between temperature and snowfall
variables and climate indicators. Weather WTP values should be in-
terpreted as the loss (gain) in use value if the weather distribution
changed such that a day in the reference bin was replaced by a day in
one of the other bins. I calculated the 95% confidence intervals using
the delta method.

Table 5. Average change in annual visits under three warming scenarios (2081 - 2100)

Climate Change Scenario ∆ Visits 95% CI
Very Low Emissions (SSP1-1.9) 5 -4,480 5,537
Intermediate Emissions (SSP2-4.5) 24 -4,480 5,537
Very High Emissions (SSP5-8.5) 66 -4,480 5,537

Note. I assume uniform increases in average temperature across all 16
nationally notable grasslands using the Intergovernmental Panel on Cli-
mate Change’s (2023) projections for the SSP1-1.9, SSP2-4.5, and SSP5-
8.5 greenhouse gas emissions scenarios between 2020 and 2081-2100. I cal-
culated the 95% confidence intervals using the Krinsky and Robb (1986)
method with 1,000 draws.
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Table 6. Average annual compensating variation under three warming scenarios (2081 -
2100)

Climate Change Scenario CV 95% CI
Very Low Emissions (SSP1-1.9) -$1,513 -$36,061 121,042
Intermediate Emissions (SSP2-4.5) $23,725 -$152,071 $666,800
Very High Emissions (SSP5-8.5) $51,963 -$298,431 $1,319,412

Note. I assume uniform increases in average temperature across all 16 nationally
notable grasslands using the Intergovernmental Panel on Climate Change’s (IPCC,
2023) projections for the SSP1-1.9, SSP2-4.5, and SSP5-8.5 greenhouse gas emissions
scenarios between 2020 and 2081-2100. I calculated the 95% confidence intervals us-
ing the Krinsky and Robb (1986) method with 1,000 draws.
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Figures

Figure 1. Nationally notable grasslands in the choice set

Note. NG = National Grassland
Source. U.S. Geological Survey
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Figure 2. Comparison between monthly visit estimates from StreetLight Data and the U.S.
National Park Service for the Tallgrass Prairie National Preserve (January 2019 - April 2022)
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Note. The dashed line represents the number of individuals counted at three locations within the grassland
or attending a special event at the grassland (U.S. National Park Service, 2022, 2024a). The dashed and
dotted line represents the number of vehicles counted at a single location within the grassland (U.S.
National Park Service, 2024b). The solid line is the StreetLight estimate for the number of visits to the
grassland in a month.
Source. U.S. National Park Service and author calculations (StreetLight Data)

36



Figure 3. Distribution of monthly StreetLight Data visit estimates by grassland
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Note. All sites are national grasslands unless otherwise noted.
Source. Author calculations (StreetLight Data)
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Figure 4. Number of days observed in each weather bin across all grasslands (January 2019
- April 2022)

(a) Daily Average Temperature (◦F) (b) Total Rainfall (in.)

(c) Total Snowfall (in.) (d) Daily Average Wind Speed (MPH)

Note. Rainfall estimates include snow melt.
Source. gridMET, PRISM, and U.S. National Weather Service
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Figure 5. Average daily temperature distribution for 16 nationally notable grasslands (January 2019 - April 2022) by 30-year
cooling degree day (CDD) normals

Note. All sites are national grasslands unless otherwise noted. CDD 30-year normals are the average number of annual CDDs between 1992 and
2021 for each grassland. A CDD represents a one-degree positive difference between the average daily temperature and 65 °F. The number of CDDs
per day increases linearly as average daily temperature increases and is zero for average daily temperatures below 65 °F. TPNP = Tallgrass Prairie
National Preserve.
Source. Author calculations (PRISM)
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Figure 6. Monthly visits and average maximum daily temperature - Little Missouri National
Grassland (January 2019 – April 2022)
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Note. The dashed line represents the average daily temperature in each month at Little Missouri National
Grassland. The solid line is the total number of visits to the grassland in that month. The shaded regions
show months in which it was legal for visitors to hunt big game or fowl on the grassland (see Footnote 3).
Source. Author calculations (PRISM and StreetLight Data)
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Figure 7. Monthly visits and average maximum daily temperature - Lyndon B. Johnson
National Grassland (January 2019 – April 2022)
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Note. The dashed line represents the average daily temperature in each month at Lyndon B. Johnson
National Grassland. The solid line is the total number of visits to the grassland in that month. The shaded
regions show months in which it was legal for visitors to hunt big game or fowl on the grassland (see
Footnote 3).
Source. Author calculations (PRISM and StreetLight Data)
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Figure 8. Marginal impacts on willingness to pay per grassland visit of changes in average
daily temperature from the reference bin (60 - 65 ◦F)
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Note. Willingness to pay (WTP) estimates based on results from the model with site, month-of-year, and
hunting season fixed effects. Values should be interpreted as the loss (gain) in use value if the temperature
distribution changed such that a day in the 60 - 65 ◦F bin was replaced by a day in one of the other bins.
Average WTP for a grassland visit is $53.60. I calculated the 95% confidence intervals using the delta
method.
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Figure 9. Marginal impacts on willingness to pay per grassland visit of changes in average daily temperature from the reference
bin (60 - 65 ◦F) by 30-year CDD normal percentile
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Note. Willingness to pay (WTP) estimates based on results from the model with site and month-of-year fixed effects. Values should be interpreted
as the loss (gain) in use value if the temperature distribution changed such that a day in the 60 - 65 ◦F bin was replaced by a day in one of the other
bins. I calculated the 95% confidence intervals using the delta method. CDD = cooling degree day.
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